NAME:

Матн 511 - Ехам 2

1) For the set of vectors in \mathbb{R}^2 define addition normally but scalar multiplication by $\alpha \boldsymbol{x} = [x_1, \alpha x_2]^T$. Does this form a vector space? Explain. (Note: Axioms are given on the last page of the exam) 2a) Is the set of all polynomials p(x) in P_4 such that p(0) = 0 (these are the polynomials whose graph passes through the origin) a subspace of P_4 ? Explain.

2b) Does the set of all 2 x 2 matrices A such that $a_{22} = 1$ form a subspace of $\mathbb{R}^{2 \times 2}$? Explain.

3) Let $\boldsymbol{x}_1 = [1, 0, -1]^T$, $\boldsymbol{x}_2 = [2, 4, 0]^T$, and $\boldsymbol{x}_3 = [0, 2, 1]^T$. Are the vectors linearly independent? Prove your answer.

4) Are $\{(1), (1+x), (x+x^2), (x^2+1)\}$ linearly independent in P_3 ? Prove your answer.

5) Consider the vectors $\boldsymbol{x}_1 = [1, 2, 1]^T$, $\boldsymbol{x}_2 = [2, 5, 0]^T$, $\boldsymbol{x}_3 = [1, 3, -1]^T$, and $\boldsymbol{x}_4 = [3, 7, 1]^T$. What is the dimension for the Span of the vectors? Pare down and/or extend the vectors to make a basis for \mathbb{R}^3 .

6) For P_2 with bases $B_1 = \{1 - x, 1 + 2x\}$ and $B_2 = \{1 - 3x, 2 + 7x\}$, find the matrix, and call it S, representing the change of base from B_2 to B_1 . Find the transition matrix, and call it T, representing the change of base from B_1 to B_2 . DO NOT MULTIPLY THE MATRICES OR FIND ANY INVERSES FOR YOUR ANSWERS. Just leave them as a product of matrices and their inverses.

7) Determine if $L([x_1, x_2]^T) = [x_1, x_1, x_1 + x_2^2]^T$ from \mathbb{R}^2 to \mathbb{R}^3 is a linear operator.

8) Let A be a 3×4 matrix and U is the reduced row echelon form of A. If ...

$$U = \left(\begin{array}{rrrr} 1 & -2 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

a) determine the rank(A), the nullity of A, and the dependency equations.

b) if $a_1 = [1, 2, 3]^T$, $a_2 = [-2, -4, -6]^T$, $a_3 = [-1, 1, -2]^T$, and $a_4 = [-1, 4, -1]^T$ then write the column space of A as a Span.

c) write the row space of A as a Span.

d) write N(A) as a Span.

9) Determine the kernel and range of the linear operator $L(\mathbf{p}) = x\mathbf{p}' + \mathbf{p}''$ on P_3 .

10) For the linear operator $L(\boldsymbol{x}) = [x_1, x_2, x_1 + 2x_2]^T$ from \mathbb{R}^2 into \mathbb{R}^3 find the standard linear operator matrix, A_E .

- 11) For the linear operator $L(\mathbf{p}) = x \mathbf{p}' + \mathbf{p}''$ on $P_3 \dots$
 - ... with standard basis $E = \left[(1), (x), (x^2)\right]$ and basis $B = \left[(1), (1+x), (x+x^2)\right]$
 - a) Find the matrix representation of L with respect to the standard basis, and call it A_E .
 - b) Find the matrix representation of L with respect to basis B, and call it A_B .

VECTOR SPACE AXIOMS

Let V be a set on which the closed operations of addition and scalar multiplication are defined. By this we mean that ...

C1) If $\boldsymbol{x} \in V$ and α is a scalar, then $\alpha \boldsymbol{x} \in V$.

C2) If $\boldsymbol{x}, \boldsymbol{y} \in V$, then $\boldsymbol{x} + \boldsymbol{y} \in V$.

The set V, together with the operations of addition and scalar multiplication, is said to form a vector space if the following axioms are satisfied:

- A1) $\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{y} + \boldsymbol{x}$
- A2) (x + y) + z = x + (y + z)
- A3) There exists element **0** such that x + 0 = x
- A4) There exists element -x such that x + (-x) = 0
- A5) $\alpha(\boldsymbol{x} + \boldsymbol{y}) = \alpha \boldsymbol{x} + \alpha \boldsymbol{y}$
- A6) $(\alpha + \beta)\boldsymbol{x} = \alpha \boldsymbol{x} + \beta \boldsymbol{x}$
- A7) $(\alpha\beta)\boldsymbol{x} = \alpha(\beta\boldsymbol{x})$
- A8) $1 \cdot \boldsymbol{x} = \boldsymbol{x}$