Nath 511
Finat Review:

$$
\left.\begin{array}{l}
\text { Fxam } 1 \rightarrow 5 \text { probs } \\
\text { Exan } 2 \rightarrow 5 \text { probs } \\
\text { Exam } 3 \rightarrow 5 \text { pios }
\end{array}\right\} \begin{aligned}
& 10 \text { pts each } \\
& 140 \mathrm{pts}=100 \%
\end{aligned}
$$

$$
\text { Final } \rightarrow \text { Tuestal } \quad 1 p^{\mu}-2^{50} p^{\mu}
$$

Study Idecs:
Eran 1 poros taday
Exam 2 poobs Set
Exan 3 porbs Sin
"Rest" Monday (Do not ci=m)

Nove.
(\#) \leftarrow "on" test

+ nex an test
z(\#) \leftarrow Study, it may be a test

Exam 1

Solve the system of equations. DO NOT use matrices.

$$
\begin{aligned}
2 y+2 u & =8 \\
x-2 y+z+u & =0 \\
2 x+y+z-u & =3 \\
x+y+u & =5
\end{aligned}
$$

2) Sglve the system of equations. Use Gaussian Elimination on an augmented matrix.

$$
\begin{aligned}
2 y+2 u & =8 \\
x-2 y+z+u & =0 \\
2 x+y+z-u & =3 \\
x+y+u & =5
\end{aligned}
$$

4) Perform the indicated operations.
a) $\left(\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right)\left(\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right)^{T}-2\left(\begin{array}{cc}x & -y \\ y & 2 x\end{array}\right)$
b) $\left(\begin{array}{lll}a & b & c\end{array}\right)^{T}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$
c) Calculate $I+A+A^{2}$ for the matrix A ...

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

(5) Verify the given matrices are inverses.

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 2 & 1
\end{array}\right), \text { and } D=\left(\begin{array}{ccc}
0.5 & 0 & 0 \\
-1 & 1 & 0 \\
2.5 & -2 & 1
\end{array}\right)
$$

6) Prove that if $B A=A$ and B is not the identity matrix, then A^{-1} does not exist.

$$
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right), B=\left(\begin{array}{cc}
1 & 2 \\
4 & -3
\end{array}\right), \text { and } X=\left(\begin{array}{cc}
3 & 1 \\
-2 & 5
\end{array}\right)
$$

Solve $A X+2 B=X+C$ for matrix C.
8) Find A^{-1} for the the given matrix.

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 2 & 1
\end{array}\right)
$$

9) Find the LU factorization for the the given matrix.

6

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
4 & 3 & 1 \\
2 & 4 & 4
\end{array}\right)
$$

c) Let A be a 3×3 matrix, what are $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}$, and $\mathbf{a}_{\mathbf{3}}$ in relation to matrix A ? If $\mathbf{a}_{\mathbf{1}}+\mathbf{2} \mathbf{a}_{\mathbf{2}}=\mathbf{a}_{\mathbf{3}}$, then how many solutions will the system $A \mathbf{x}=\mathbf{0}$ have? Explain. Is A invertable? Explain.

11) Given matrix A

\checkmark

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 1 \\
5 & 3 & 1
\end{array}\right)
$$

a) Find $\operatorname{det}(A)$ by co-factors.
b) Find $\operatorname{det}(A)$ by elimination.
c) Does A have an inverse? Explain.
12) Given matrix A

0

What conditions must the scalars a, b, and c satisfy for A

$$
=(b-a)(c-a)(c+a)-(c-a)(b-c)(b+a)
$$

Exam 2

$$
x+(A)=0=(b-a)(c-a)[c+x-b-x]
$$

1) For the set of vectors in i^{2} define addition normally but scalar multiplication by $\alpha \boldsymbol{x}=\left[x_{1}, \alpha x_{2}\right]^{T}$. Does this form a vector tace? Explain. (Note: Axioms are given on the last page of the exam)

$$
x+\mathscr{y}=\left[\begin{array}{ll}
x_{1} & y_{\partial} \\
\lambda_{2} & -y_{2}
\end{array}\right]
$$

2) Does the set of all 2×2 matrices A such that $a_{22}=1$ form a subspace o $-a^{2 \times 2}$? x plain.

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{2} x^{3}+\ldots
$$

3) Let $\boldsymbol{x}_{1}=[1,0,-1]^{T}, \boldsymbol{x}_{2}=[2,4,0]^{T}$, and $\boldsymbol{x}_{3}=[0,2,1]^{T}$. Are the vectors linearly independent? Prove your answer.
4) Are $\left\{(1),(1+x),\left(x+x^{2}\right),\left(x^{2}+1\right)\right.$ linearly independent P_{3} ? Prove your answer.
b) (ant $u x \operatorname{det}()$ overdetermen 3×5
5) Consider the vectors $\boldsymbol{x}_{1}=[1,2,1]^{T}, \boldsymbol{x}_{2}=[2,5,0]^{T}, \boldsymbol{x}_{3}=[1,3,-1]^{T}$, and $\boldsymbol{x}_{4}=[3,7,1]^{T}$. What is the dimension for the Span of the vectors? Pare down and/or extend the vectors to make a basis for $\overbrace{}^{3}$.

$$
\begin{aligned}
& \text { find lkad/fre } \\
& \text { c) lunar con bo }=\text { zero less }
\end{aligned}
$$

a) Segue us dat () C

$$
L\left[\begin{array}{l}
\{ \\
\xi
\end{array}\right]=\left[\begin{array}{l}
2 k \\
x=0 \\
20
\end{array}\right]
$$

OR FIND ANY INVERSES FOR YOUR ANSWERS. Just leave them as a product of matrices and their inverses.

$$
A_{E}=L\left(\text { skald ko os) }-\left[\begin{array}{cc}
L(1), & L(x), \\
{[i]} & L\left(x^{-}\right) \\
{[i]} & {[i]}
\end{array}\right]\right.
$$

1) For the pair vectors $\boldsymbol{x}=(1,2,3)^{T}$ and $\boldsymbol{y}=(1,1,1)^{T}$, using the scalar product find the scalar projection α of \boldsymbol{x} onto \boldsymbol{y} and rector projection \boldsymbol{p} of \boldsymbol{x} onto \boldsymbol{y}.

3×4 of I used \#8 \& Evan 2

inner product space: (see \#1, $44, \# 5, \# 7$) (See below)
2) Let A be matrix. Considering A as a linear transform describe its domain and codomain and draw a visual example as has been done in class. For the codomain, is it possible for A to have the vector $(2,1,2)^{T}$ in its column space and $(-1,1,1)^{T}$ in the nu k space of A^{T} ? Explain.

\rightarrow This porbirn and $\#$ E Exam 2 combined

3) For an experiment you collect the following (x, y)-data points: $\{(1,1),(2,1),(3,2),(4,2),(5,1)\}$. Setup the matrices and σ equation to solve the least-squares fit to the data by a cubic polynomial. DO NOT solve the system, but explain the steps you would take to solve it.

1
,4) Given inner product space : $: \imath^{2 \times 2}$ with $\langle A, B\rangle=a_{11} b_{11}+a_{12} b_{12}+a_{21} b_{21}+a_{22} b_{22}$
,

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right)
$$

find the projection of A onto B.

76
6) The functions $\cos (x)$ and $\sin (x)$ form an orthonormal set in $C[-\pi, \pi]$ with the inner product defined by $\langle f, g>=$ O $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$. Determine the value of ...

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{(4 \sin (x)-2 \cos (x))(\cos (x)+3 \sin (x)) d x}{\left[\begin{array}{c}
4 \\
-2
\end{array}\right]} \cdot 1 \frac{12-2=10}{\left[\begin{array}{l}
3 \\
1
\end{array}\right]}
$$

77) With respect to the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$ are the Legendre Polynomials $p_{1}(x)=x, p_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$, ${ }^{\bullet}$ and $p_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$ orthogonal?

Use the Gram-Schmidt process to find the $Q R$ factorization of $A=\left(\begin{array}{cc}2 & 5 \\ 1 & 10\end{array}\right)$
9) Find the eigenvalues and corresponding eigenvectors of the matrix

10) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
3 & -8 \\
2 & 3
\end{array}\right)
$$

150 tanks each contain 200 liters of a mixture. Initially, the mixture in tank A contains 60 grams of salt while tank B cytsins no salt. Pure water is pumped into tank A at $15 \mathrm{~L} / \mathrm{min}$, the mixture from tank B is pumped into tank A at $5 \mathrm{~L} / \mathrm{min}$, the mixture from tank A is pumped into tank B at $20 \mathrm{~L} / \mathrm{min}$, and the mixture from tank B is pumped out of the system at 15 L/min. Draw a figure representing this system. Setup the instal value problem of the form $\boldsymbol{Y}^{\prime}=A \boldsymbol{Y}, \boldsymbol{Y}(0)=\boldsymbol{Y}_{0}$. DO NOT solve.

12) For the given matrix A, find the equation $A X=X D$ where D is a diagonal matrix. 6

$$
A=\left(\begin{array}{ll}
2 & -5 \\
0 & -3
\end{array}\right)
$$

