Матн 322 ... Ехам 2

0) Please explain all your answers in the exam.

2) Prove that if the a simple undirected graph with no self-loops, time G is a connected and
$$|E| = |V| - 1$$
.
(VI-1 |EI-0
(VI-1 |EI-0
I) Juchter: (-21)
(VI-1 |EI-0
I) Juchter: (-3) with no self-loops $0 \stackrel{2}{=} 1 - 1$ is true.
I) Juchter: (-3) with no self-loops $0 \stackrel{2}{=} 1 - 1$ is true.
I) Juchter: (-3) with no self-loops of $1 \stackrel{2}{=} 1 - 1$ is true.
II Juchter: (-3) with no self-loops of $1 \stackrel{2}{=} 1 - 1$ is true.
II Juchter: (-3) with no self-loops of $1 \stackrel{2}{=} 1 - 1$ is true.
II Juchter: (-3) with no self-loops of $1 \stackrel{2}{=} 1 - 1$ is true.
II Juchter: (-3) with no self-loops of $1 \stackrel{2}{=} 1 - 1$ is true.
II Juchter: (-3) with no self-loops of $1 \stackrel{2}{=} 1 - 1$ is true.
II Juchter: (-3) with no self-loops of $1 \stackrel{2}{=} 1 - 1$ is true.
II Juchter: (-3) with no self-loops of $1 \stackrel{2}{=} 1 = (K - 1) + 1$ of $1 \stackrel{2}{=} 1 \stackrel{2}{=} (K - 1) + 1$ of $1 \stackrel{2}{=} 1 \stackrel{2}{=} (K - 1) + 1$ of $1 \stackrel{2}{=} 1 \stackrel{2}{=} (K + 1) - 1$
(contracted $|E| = (K + 1) - 1$ is true.
If we shall be a objective of $1 \stackrel{2}{=} 1 = (K + 1) - 1$
(contracted $|E| = (K + 1) - 1$ is true.
If we shall be a objective of $1 \stackrel{2}{=} 1 \stackrel{2}$

4) Use Dijkstra's Algorithm to find a spanning tree starting at vertex a

£

مال could se OF

5) You have 3 coins. One of them may be a fake that is either heavier or lighter than the real coins. Using a balance scale what is the best possible number of weighings that you need to always find the possible fake? Create a Decision Tree to find the fake.

7) For the expression $\tan(x^y - y\sqrt{2x+1})$ draw it's given tree and find ...

a) The prefix notation

b) The infix notation

c) The postfix notation

- 8) For the poset $(D_{42}, |)$ where $D_{42} = \{1, 2, 3, 7, 6, 14, 21, 42\},\$
 - a) Draw the Hasse Diagram for D_{42} with respect to |.

b) Find all lower bounds, upper bounds, the greatest lower bound, and the least upper bound for 6 and 14.

9) For the lattice $(D_6, |)$ where $D_6 = \{1, 2, 3, 6\}$, write its operation table for meet.

10) For the boolean algebra $P(\{a, b\})$ with \subseteq , write the operation tables for $\cap, \cup, -$.

11) Find the atoms for the boolean algebra $(D_{42}, |)$ where $D_{42} = \{1, 2, 3, 7, 6, 14, 21, 42\},\$

12) Find the minterm and maxterm expansions for g(x, y, z) = xy + z

0) What is the time you ended working on the exam and started scanning it?