Math 243
Q) $y=3(\sin (x))^{\wedge} 2, y=0,0 \leq x \leq \pi ;$ about the x-axis

Nove

$$
V_{d}=\int_{0}^{\pi}(2 D \operatorname{stics}) d x
$$ aren $\dot{4}$ circh: $\pi\left(r_{\text {ar }}\right)^{2}$

$$
\begin{aligned}
& V=\int_{0}^{\pi} \pi\left(3 \sin ^{2} x\right)^{2} d x=9 \pi \int_{0}^{\pi} \sin ^{4} x d x \\
& V=\pi \pi \int_{0}^{\pi} \sin ^{4} x d x \\
& \quad\left(\sin ^{2} x\right)^{2}=\left(\frac{1}{2}(1-\cos 2 x)\right)^{2}=\frac{1}{4}\left(1-2 \cos 2 x+\left(\cos ^{2} x x\right)\right.
\end{aligned}
$$

$\sin ^{4} x \Rightarrow \frac{1}{4}-\frac{1}{2} \cos 2 x+\left(\frac{1}{2}(1+\cos 4 x)\right)$

$$
=\frac{3}{4}-\frac{1}{2} \cos 2 x+\frac{1}{2} \cos 4 x
$$

$\left.V=9 \pi \int_{\partial}^{\pi} \int^{\frac{3}{4}}-\frac{1}{2} \cos 2 x+\frac{1}{2} \cos 9 x\right) d x$

$$
=\text { fush! }
$$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{x}-\sqrt[5]{x}} \quad \ln +c=\sqrt[6]{x} \\
& \int \frac{d x}{x^{x_{2}}-5 x^{x_{3}}}=\int \frac{d x}{x^{3 / 6}-5 x^{2 / 6}}=\int \frac{6 u^{5}}{u^{3}-5 u^{2}} d u \\
& \operatorname{lnt} u=x^{v_{6}} \\
& d u=\frac{1}{6} x^{-5 / 6} d x \rightarrow 6 x^{5 / 6} d u=d x \\
& 6 u^{5} d u=d x \\
& 6 \int \frac{u^{5}}{u^{2}-5 u^{2}} \frac{u^{2}}{2} d u=6 \int \frac{u^{3}}{u-5} d u=6 \int\left[u^{2}+5 u+25+\frac{125}{u-5}\right]^{d u} \\
& \frac{u^{2}+5 u+25}{u - 5 \longdiv { u ^ { 3 } + 0 u ^ { 2 } + 0 u + 0 }} \\
& =6\left[\frac{1}{3} u^{3}+\frac{5}{2} u^{2}+25 u+125 \ln |u-5|\right]+c \\
& \begin{array}{l}
\frac{u^{3}-5 u^{2}}{5 u^{2}}+0 u \\
\frac{5 u^{2}-25 u}{25 u+0} \\
\frac{25 u-125}{125}
\end{array} \\
& =2 u^{3}+15 u^{2}+150 u+750 \ln |u-5|+C \\
& \text { Rementar } u=x^{16} \\
& =2 \sqrt{x}+15 \sqrt[3]{x}+150 \sqrt[6]{x} \\
& +750 \ln |\sqrt[6]{x}-5|+c
\end{aligned}
$$

7,83 Inpoper Definate Iutegrals.. $\int_{a}^{b} f(x) d x$
(i)

Aree when woth is note farite!
(2)

$f(x)$ is discouticaos e. $x=b$

Aree men height is not fluite!
Zenos forator

timer avrou to hit titte ttst tit...

$$
\begin{aligned}
& (t \rightarrow \infty\} \\
& \left.\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1 \\
& \lim _{n=\infty} \sum_{i=1}^{n} \frac{1}{2^{i}}
\end{aligned}
$$

(1) Infiute Daunds $\int_{a}^{b} f(x) d x$ a aublor b is infinite
a) $\int_{a}^{\infty} f(x) d x$

if b uas "large" $\int_{a}^{b} f(x) d x \approx \int_{a}^{\infty} f(x) d x$

ex

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-2} d x \\
& =\lim _{b \rightarrow \infty}\left(-x^{-1}\right)_{1}^{b}=\lim _{b \rightarrow \infty}\left(-x^{0}+1\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{\sqrt{x}} d x \\
& \xlongequal{1+\frac{r^{\frac{1}{\sqrt{x}}}}{1+1}} \frac{\frac{1}{x^{2}}}{} \\
& =\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-1 / 2} d x=\left.\lim _{b \rightarrow \infty}\left(2 x^{y_{2}}\right)\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty}\left(2, \sqrt{b^{p}}-2\right)=\infty \quad \text { diverges } \\
& \frac{1}{x^{p}} 1 \\
& =\left.\lim _{b \rightarrow \infty}\left(\frac{1}{1-p} x^{1-p}\right)\right|_{1} ^{b}=\lim _{b \rightarrow \infty}\left(\frac{1}{1-p} b^{1-p}-\frac{1}{1-p}\right) \\
& =\frac{1}{1-p} \lim _{b \rightarrow \infty}\left(b^{1-p}-1\right)=\frac{p>1 \rightarrow \frac{1}{p-x}}{p<1 \rightarrow 1 x} \\
& \text { DE } \\
& \int_{1}^{\infty} \frac{1}{x} d x=\left.\lim _{b \rightarrow \infty} \ln |x|\right|_{1} ^{b}-\lim _{b \rightarrow \infty}(\ln b)=\infty
\end{aligned}
$$

So) $\int_{1}^{\infty} \frac{7}{x^{p}} d x \quad$ diverges for $p \leq 1$ conerge for $p>1$
(1) $\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$
(2) $\int_{-\infty}^{b} f(\rightarrow) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x$
(3) $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x$

(20)

$$
\begin{aligned}
& \iint_{-\infty}^{\infty} e^{-|x|} d x=\int_{-\infty}^{0} e^{-|x|} d x+\int_{0}^{\infty} e^{-|x|} d x \\
& \sqrt{\mid 020 e}: \quad|x|= \begin{cases}x & x \geq 0 \\
-x & x<0\end{cases} \\
& =\int_{-\infty}^{0} e^{-(-x)} d x+\int_{0}^{\infty} e^{-(x)} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{0} e^{x} d x+\int_{0}^{\infty} e^{-x} d x \\
& =\lim _{a \rightarrow-\infty} \int_{a}^{0} e^{x} d x+\lim _{b \rightarrow \infty} \int_{d}^{b} e^{-x} d x \\
& =\lim _{a \rightarrow-\infty}\left[\left.e^{x}\right|_{a} ^{0}\right]_{0}+\lim _{b \rightarrow \infty}\left[-\left.e^{-x}\right|_{0} ^{b}\right] \\
& =\lim _{a \rightarrow-\infty}\left[1-e^{a^{0}}\right]+\lim _{b \rightarrow \infty}\left[-e^{-x^{-10}}+1\right] \\
& =1 x 1 \\
& =2 \\
& \text { 1. } y_{x} \int_{1}^{\infty} \frac{1}{x} d x \text { divagent. } \\
& \int_{1}^{\infty} \pi\left(\frac{1}{x}\right)^{2} d x=\pi \int_{1}^{\infty} \frac{1}{x^{2}} d x \\
& \pi \lim _{b \rightarrow \infty} \int_{1}^{b^{1}} x^{-2} d x=\pi \lim _{b \rightarrow \infty}-\left.x^{-1}\right|_{1} ^{b} \\
& =\pi \lim _{b \rightarrow \infty}\left[-\frac{1}{b^{0}}+1\right]=\pi
\end{aligned}
$$

$f(x)$ is discortinuas a $x=b$
(2)

$$
f(x) \text { is disce } e x=a
$$

(3)

$f(x)$ is disce $x=c$ in the $[a, b]$ interral

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(m d x
$$

(2x) $\int_{0}^{2} \frac{1}{x-2} d x=\lim _{t \rightarrow 2^{-}} \int_{0}^{t} \frac{1}{x-2} d x$

$$
f_{1}=\left.\lim _{t \rightarrow 2^{-}}^{0} \ln |x-2|\right|_{0} ^{t}=\lim _{t \rightarrow-2} \ln (t-2)^{2}-\ln 2
$$ 2iverges

(ex) $\int_{0}^{9} \frac{1}{\sqrt[3]{x-1}} d x$

$$
\begin{aligned}
& L_{p}=\int_{0}^{1} \frac{1}{\sqrt[3]{x-1}} d x+\left.\int_{1}^{a} \frac{1}{\sqrt[3]{x-1}} d x\right|_{i} ^{a} \\
& =\lim _{s \rightarrow 1^{-}} \int_{0}^{5} \frac{1}{\sqrt[3]{x-1}} d x+\lim _{t \rightarrow 1^{+}} \int_{t}^{a} \frac{1}{\sqrt[3]{x-1}} d x
\end{aligned}
$$

$\frac{\text { boh }}{\text { bse }} \int(x-1)^{-1 / 3} d x=\int u^{-1 / 3} d u$
lat $u=x-1=\frac{3}{2} u^{2 / 3}+c$ $d u=d x=3 / 2(x-1)^{1 / 3}+c$

$$
l_{y}=\lim _{s \rightarrow 1^{-}}\left[\frac{3}{2}\left(5 x^{-1)^{2}}-\frac{3}{2}\right]+\lim _{t \rightarrow 1^{+}}\left[\frac{3}{2}(4)-\frac{3}{2}\left(t^{0}-1\right)^{2 / 3}\right]\right.
$$

$$
=-\frac{3}{2} \quad+
$$

6

$$
=\sqrt{9 / 2}
$$

Comporson theores

$$
\int_{a}^{\infty} f(x) d x
$$

(b) $\int_{a}^{\infty} g(x) d x$

thuns if aren vider f is couv. $\rightarrow \mathrm{g}$ is also convergent.
(2) if area under g is div.
\rightarrow f.is also divargent.
(ex) $\int_{1}^{\infty} e^{-x^{2}} d x=\lim _{b \rightarrow \infty} \frac{\int_{\frac{1}{b} e^{-x^{2}} d x}^{4}}{4}$

$$
\rightarrow\left[\int_{1}^{\infty} e^{-x^{2}} d x\right. \text { aोso conxerges }
$$

$$
\begin{aligned}
& =\lim _{b \rightarrow \infty}\left[-\left.e^{-x}\right|_{1} ^{b \rightarrow \infty}\right]=\lim _{b \rightarrow \infty}\left[-e^{-b^{0}}+\overline{y_{e}}\right]=y_{e}
\end{aligned}
$$

Ch8 More Applicatios
pils Ar length

$$
\begin{aligned}
& \text { aren } \\
& \text { leugh } \\
& \text { aren [最/ } \\
& \text { T } \int^{\infty} \operatorname{son} \text { of thalimet are length } \\
& \lim 1=\sqrt{d x^{2}+d y^{2}} \\
& =\sqrt{1+\left(\frac{d x}{d x} x^{2}\right.} d x \\
& \text { arclength }=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& \text { ex } y=1+6 x^{3 / 2} \text { from } x=0 \text { to } x=1 \\
& y^{\prime}=9 x^{y_{2}}, \\
& A \omega=\int_{0}^{1} \sqrt{1+(9 \sqrt{x})^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+81 x} d x \\
& \text { fut } u=1+81 x \\
& =\frac{1}{81} \int_{1}^{82} \sqrt{u} d u=\left.\frac{2}{243} u^{3 / 2}\right|_{1} ^{82} \\
& d u=81 d x \\
& =\frac{2}{243}\left[82^{3 / 2}-1\right]
\end{aligned}
$$

et. $y=\ln (\cos x)$ fron $x=0$ to $x=\pi / 3$

$$
\begin{aligned}
& A L=\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& p y^{\prime}=\frac{1}{\cos x}(-\sin x)=-\tan x \\
& \rightarrow A L=\int_{0}^{\pi / 3} \sqrt{1+\tan ^{2} x} d x \\
&=\int_{0}^{\pi / 3} \sqrt{\sec x} d x=\int_{0}^{\pi / 3}|\sec x| d x \\
&=\int_{0}^{\pi / 3} \sec x d x
\end{aligned}
$$

(v) $\int_{0}^{\pi}(\sec x) d x$

$$
\begin{aligned}
& \left.=\int_{0}^{\pi / 2}(\sec x) d x+\int_{\pi / 2}^{\pi} \mid \sec x\right) d x \mid \cdot \int_{\pi / 2}^{\pi}-\sec x d x \\
& =\int_{0}^{\pi / 2} \sec x d x+\int_{s \rightarrow \pi / 2}^{\pi}\left[\int_{0}^{s} \sec x d x\right]+\lim _{t \rightarrow 2^{+}}\left[\int_{t}^{\pi}-\sec x d x\right]
\end{aligned}
$$

$=$ Sivohe

