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ExaM 1 PROBLEMS

M
\ @onstruct the Jtruth table pveryone should know. \ O A O\/\ Q‘KD\
?
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: “The cat scared the dog”, s: “The cat is named Silly”, and p : “Silly has a pet lion”. Express the
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3) Use a truth table to show that the statement$ (p — ¢) A (p — ) p—(gAT) logically equivalent.
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4) $how that (p — ¢) and (—g — —p)\are logically equivalen
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to show thaft (p A ¢) — p is a)tautology.
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6) Yet S(u) mean that “u is silly,” F(v) mean that “v is fast,” and B(a,b) mean that “a has beat b in a race”,
ere the universe of discourse for each variable consists of all children.
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Express Jz(S(z) AVy(F(y) — B(x,y))) by a simple English sentence.

b) Use quantifiers and the propositional functions given above to express “Every fast kid has either beat John
in a race or been beat by John in a race”.



following argument valid? “You do not do every problem in the book or yoplearn discrete mathematics.
#ned discrete mathematics. Therefore, you did every problem in the book.’ur answer.
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\ ove that v/2 isirrational. Remember to prove any lemma you use.
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or the integers 2,3,4,... Prove: if n2 < 2", then n >4 .
) Show that there exist irrational numbers x and y such that, ¥ is rational.

ExaM 2 PROBLEMS

set builder notation and roster forms to represent each of the following sets. The set A is even integers
1 to 10, the set B is all integers that are a multiple of 4 from -10 to 10, and among a universe of discourse of
i rs from -10 to 10. And then illustrate all the sets and the universe of discourse with a single Venn Diagram.
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? @eptesent AN (AN B) with a Venn Diagram by using a membership table.
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\ ow that m = AN B using set builder notation and\logical equivalences.
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If f and f o g are onto, does it follow that ¢ is onto? Justify your answer.

/z 6)4) Find, a function f : 7:* — I where f is one-to-one and not onto.
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b) Find/a function f : 7. — 77 where f is not one-to-one and is onto.

a) List ghe first 5 terms of the sequence ag = —1,a1 =1 and a,, = ap—1 + 2a5,—2.

b) Find formulae for the sequence: 3, 6, 12, 24, 48, ...

1 d the value of the sum ...
P 100

50O ¥\ v~ ¥ YOO
po A -0 *¥3C

z S‘b
150 ¥ \SO ¥ =2 SO = 51 (\50D 5”\/(\“\




1Y) Prove ha@

0 1

%A—FB,A-B,AvB,A/\B,andAGBif...
0 1 1
a=(5 1) #=(10)

ExAM 3 PROBLEMS @ Q \ A

§ Gfven a,b, and ¢ are integers with ¢ # 0, Show that if ac|be, then alb.
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nd —17div7 and —17mod 7
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d 17div7 and 17mod 7 Al
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\ 3) Perform the requested operati%... //—l b 05(:7"
a) (1,2,3)7 + (4,5)7 using only base 7 numbers. /

O

4



b) (1,4)7 x (2,5)7 using only base 7 numbers.

rove there are infinitely many primes.

Z @Dd the ged and lem of 140 and 75 using prime factorization.
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6) Find

7) Given thd affine-shift fythction: f(p) = (11p + 3) mod 6 find the decryption function f=1(c).
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8) For @lcryption e =11 and n = 119. Find the decryption power d. 7 \7
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hat 1/2+1/4+1/8+...+1/2" =1—-1/2" for n = 1,2,3,... using weak induction.

10) ProveAll integers n > 2 can be written as a product of primes using strong induction.
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\%Prove that f1 + fs+ f5 + ...+ fan—1 = fon, when n is a positive integer.

ExaM 4 PROBLEMS

ow many license plates can be made where a\plate \yses either three digits followed by four uppercase English
/l ers or a(plate uses two English letters (uppercase or lowercase) followed by five digits or a ses seven
) uppercase Fnglishi letters? (Do not simplify your answer. Leave it as a product and/or sum of nuthbers.
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theintegers (includi 3 and 94) how many of them are_djvisible b@ How many are
ible @ How manyaredivisible®y 2 and 37 Yow many are divisible by
d
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3) Uge the generalized pigeonhole principle to find the minimum number of students who have to come to class to
4 be sfire that at least five have the same grade in an A, B+, B, C+, C, D+, D, and F grading system.
/
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'ow many distinct points (z,y) with integer coordinates are needed in the xy plane to have a midpoint joining
ast one pair of these points with integer coordinates? (Explain)

See. &.LQ,\YUNS .
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5) (Plgase leave your answers in factorial notation) 9 people (5 guys and 4 girls) show up for a basketball game.

a) How many ways are there to choose 5 players to play if at least two players must be a girl?

b) How many ways are there to rather simayers to play?
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ase leave your answers in factorial notation) How many bit strings of length ten ...

t a) ... Have more 0’s than 1’s?

1

b) ... Have at least seven 1’s?

7 7) What is the 32nd term for (22 + 272)*2? Leave your coefficient in factorial notation, but combine the variables
, ogether to get a single = to a specific power.
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d an initial conditions for the number of ways to lay out a walkway with slate tiles if
1les ate red, green, or black, s two—green tiles are adjacent and tiles of the same color are considered

t Smdistinguishable. \ RN
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\ @@lve ap = Gp_1 + 2a,_o with initial conditions ag = 4 and a; = —1.

1N{Solve a,, = 8a,,_o — 16a,,_4.



