MATH 511 - EXAM 3 O 1\ / \\“

1) For the given mapping i it a Linear Transform? If it is, what are the Kernel and Range?

) The mapping fron@@uch that L(ax +b) =abx’>+bx+a LE 3 L l
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b) The mapping from R? to R? such that
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2) For the linear operator L(x) = [ @12y 21 + 222]7 fro
matrix, A.

vz
7 3 find the standard linear operator
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3) For the linear operator L(p)@ P with standard basis E=[(1), (), (z?)] and

B .
basis B=[(1), (1+z), (z + 22)]. Note@he derivative of polynomial p. cg 3}
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a) Find the matrix representation of L with respect to the standard basis, and call it A.
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with respect to the non-standard basis B as a product of
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b) Write the matrix rep
inverses, B, and/or A.
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4) Let V be the subspace of C|a,b| spanned by Bx@ld let A, be the anti-differentiation operator
that also holds the constant of integration to be zero. Example: A;(2¢™%) = —2e~*. Find the matrix
that representg 4 the standard ordered basis ¢ at matrix A. Find the matrix that
i rite

represents Az () In the non-standard ordered bas
matrices A and B as B = S~'AS for some matrix \l N
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5) For the pair of vectors = (1, —2, 3) and y = (1, 1, 1)7, find the scalar projection x onto ¥, the
vector projection p of x onto~y; verify that (x — p) L p.




6) For the pair of vectors & = (1, —2,3)” and y = (1,1, 1)7, find the angle between the two vectors and
the distance between the two vectors.
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) Let A be a 3x4 matrix. Considering A as a linear transform descrl nd codo

For i it possible to have the vect r 3 1 n th null space of A')and (—1, 0, 1
in the 6lumn umn space of of A? Explaln
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b) For its domain, give ¢ of a vector 1@ the vector ( 1, 1,-1)Tis {n N(A
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8) For the matrix ...

L \
Find th@r each of the fundamental subspaces N(4), R(A), N(AT), R(AT).
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9) You have the following (z, y)-data points: {(—1, 1), (0, 1), (1, 2), (2, 2), (3, 1)}. As was explained in
the exam review ... setup the matrices and equation to solve the least-squares fit to the data by a poly-

nomial y = az? + bx + ¢. DO NOT solve it. Just get it to the point where you would only need to do
the matrix arithmetic to solve it. \x, V@
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10) Given vector space IR2*3 verify the following function is an inner product ...

(A, B) = a11b11 + 2a12b12 + 3a13b13+ 4aoibar + 5agsbao + 6 azsbas N (
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11) Given inner product space R?*3 with inner product ...

(A, B) =a11b11 + a12b12 + a13b13 + a21b21 + aobaz + azsbaz < 7 7 Q 25 (’30 Y
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find the projection of matrix C' onto matrix D.
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