Math 415

Q's
12. Prove that $9 \mid\left(4^{3 n}+8\right)$ for every integer $n \geq 0$.
far Induction: goal is $\forall n P\left(e_{n}\right)$
Set e_{i} are well asdered $e_{1}, e_{2}, l_{3}, \ldots$
(in pave this by...
(1) Besis Stap: Show $P\left(C_{1}\right)$ is tive
(2) Inductive Stxp:
(Fnductive
Assan $P\left(e_{1}\right) \wedge . . \wedge P\left(e_{k}\right)$ are tive (Hyphlasis) Show $P\left(e_{k+1}\right)$ is tre

So 12. Prove that $9 \mid\left(4^{3 n}+8\right)$ for every integer $n \geq 0$.

(A) $2^{\text {nu }}$ elent: $(n=1)$ Prodiak $9 / 4^{3(1)}+\varepsilon$ Toué fíl ?
$\frac{[(n=k)}{\left[\begin{array}{lll}\text { Prodicate } & a /\left[4^{3 k}+\varepsilon\right. \\ (n=k+1) & \text { Prodick } & 9 / 4^{(k+k)}+8\end{array}\right]}$ i $914^{3 k+3}+8$
(B.1) Il n is $a \cdot k=n$ for itker n
(0.2) $9 / n$ also says n has a facter $f 9$.
12. Prove that $9 \mid\left(4^{3 n}+8\right)$ for every integer $n \geq 0$.

Prof by induction we will price the basis step of $n=0$ which is $9 \mid 4^{3 \cdot 0}+8$, which is $9 \backslash 9$ a() this is true.
In the inductive step we will assume that $9 \backslash 4^{3 k}+8$
for $k=0,1, \ldots, k$. We will show $4^{3 k+3}+8$ has a factor of 9 . Sou, $4^{3 k+3}+8=4^{3 k} \cdot 4^{3}+8$

$$
\begin{aligned}
& =64 \cdot 4^{3 k}+8=(63+1) 4^{3}+8 \\
& =63 \cdot 4^{3 k}+4^{3 k}+8 \\
& =9 \cdot 7 \cdot 4^{3 k}+9 \cdot h \text { for } h \in z \text { by I.H. } \\
& =9\left(7 \cdot 4^{3 k}+h\right)
\end{aligned}
$$

therefore $9 / 4^{3 k+3}+8$
(Q)
30. Here F_{n} is the nth Fibonacci number. Prove that

$$
F_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
$$

上 $f_{0}=0, f_{1}=1 \quad f_{u}=f_{n-1}+f_{n-2} ; 1=2,3,4,5, \ldots$
Seq: $\underbrace{0,1}_{+}, \underbrace{1}_{+}, 2,3,5,8, \ldots \leqslant$
(2n0 golden retie $\frac{1+\sqrt{5}}{2}^{+} \quad 3{ }^{2} \frac{2}{(1+\sqrt{5})} \frac{(1-\sqrt{5})}{(1-\sqrt{5})}=-\frac{1-\sqrt{5}}{2}$
30. Here F_{n} is the nth Fibonacci number. Prove that

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{2}=1 \\
& F_{3}=2 \\
& F_{4}=3
\end{aligned}
$$

$\left.\stackrel{1^{2}}{=} \quad \frac{?}{=} \quad(1=0) \quad F_{0}=\frac{(1+\sqrt{5}}{2}\right)^{0}-\left(\frac{1-\sqrt{5}}{2}\right)^{0}$

$$
F_{5}=5
$$

$$
\vdots
$$

B-3 Step
$0^{?}=0$ tran!

$$
\begin{aligned}
& F_{k-1}= \\
& F_{K}= \\
& F_{k+1}=F_{k}+F_{k-1}
\end{aligned}
$$

tudechivestep
Assure formula wanks for fo, $f_{1}, \ldots F_{k}$

$$
F_{k}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}}{\sqrt{5}}
$$

Show:

$$
F_{k+1}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k+1} 4}{\sqrt{5}}
$$

given the defimitix of fib. Numbers...

$$
\begin{aligned}
F_{k+1} & =F_{k}+F_{k-1} \\
& =\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}}{\sqrt{5}}+\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}} \\
& =\frac{\left(\frac{\sqrt{1+\sqrt{5}})^{k}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}+\left(\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}\right.}{\sqrt{5}} \\
& =\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k}+\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}=\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}}=? ?
\end{aligned}
$$

Name: fey
Math 415 ... Exam 2

1) Prove: If a is an odd number then $a^{2}+3$ has a factor of 4 .
(dirac) Assur $a=2 k+1, k \in \mathbb{Z}$
therefore $a^{2}+3=(2 k+1)^{2}+3=4 k^{2}+4 k+1+3$

$$
=4\left(k^{2}+k+1\right)
$$

2) Prove: If 3 divides a, then 3 also divides $a^{2}+2 a-3$.
(Direct) 3 a remus 3 is a factor $d<$ and. $30 k=a, k \in \mathbb{Z}$.
So $a^{2}+2 a-3=9 k^{2}+6 k-3=3\left(3 k^{2}+2 k-1\right)$

$$
a^{2}+2 a-3 \text { hes - factor of } 3 \text { so } 3 \mid \hat{a}+2 a-3
$$

3) Prove: For x and y integers, if $x^{2}(y+3)$ is even, then x is even or y is odd.

Contraposition: Show x is od r and y is even then $x^{2}(y+3)$ is odd, Assume $x=2 k_{1}+1, y=2 k_{2} \quad k_{i} \in \mathbb{E}$
so $x^{2}(y+3)=\left(2 k_{1}+1\right)^{2}\left(2 k_{2}+3\right)$
$=\cdots$ (finish)
$=$ we shall $\operatorname{see} 2($ int $)+1$
4) Prove the lemma: If 3 divides a^{2}, then 3 divides a.

Conteposita $3 X a \rightarrow 3 X_{a} a^{2}$
fax el $a=3 k+1$ so $a^{2}=9 k^{2}+6 k+1$

$$
=3\left(3 k^{2}+2 k\right)+1
$$

$31 a^{2} \rightarrow 31 a$
$3 \times a$ meas (1) $a=3 k+1$
(2) $a=3 k+2$

$$
\begin{aligned}
\sqrt{(a x 2}>a=3 k+2 & \text { so } a^{2}
\end{aligned}=9 k^{2}+12 k+(4)
$$

so $3 \times a^{2}$
5) Prove: $\sqrt{3}$ is irrational.

Coutaderas assume $\sqrt{3}=\frac{a}{b} \quad a, b \in E, b \neq 0$, no corina fates) so $3=\frac{a^{2}}{b^{2}}$ gives $3 b^{2}=a^{2}$ means $3 / a^{2}$ by \#4 we have $3 \backslash a$. Because $31 a$ we hove $a=3 \cdot k, k \in \mathbb{R}$. Hue $3 b^{2}=(3 k)^{2}$ ar $3 b^{2}=9 k^{2}$ give $b^{2}=3 k^{2}$ peans $3 \backslash b^{2}$ by $\# 4 \quad 3 \backslash b$ and now we know a, b have no cannon factor sud a Common factor at 3. Contradiction
6) Prove: $\log _{3} 4$ is irrational.
by contadidai Assume $\log _{3} 4=\frac{a}{b}$ with $a b \in \mathbb{E}, b \neq 0$, no curno factiss.
gives $\psi=3^{a / b}$ 4nafore $4^{b}=3^{a}$. We know 4^{b} is even
aw 3^{a} is add so we fand an exen=odd
Cartedection
7) Prove: 10 divides n if and only if both 2 and 5 divide n.
n hisafecte \& 10 iof n has afacter $f 2$ and a facter $f 5$

Qfs assum n how a fater of 10

$$
\begin{aligned}
& \equiv n=10 \cdot k, k \in \mathbb{Z}^{\prime} \\
& \equiv " n=5 \cdot 2 \cdot k, k \in \mathbb{Z}^{\prime} \\
& \equiv " \approx \text { has a facto \& } 5 \text { and a factr } f \tau^{\prime \prime}
\end{aligned}
$$

8) Prove: For integers a and b, If $\left(a^{2}-2 a\right) b^{2}$ is odd, then a and b are odd.
(Contepositio) pave if a or b ave ever, then $\left(a^{2}-2 a\right) b^{2}$ is even Case l a is ever. So $a=2 k, k \in Z$ and

$$
\begin{aligned}
\left(a^{2}-2 a\right) b^{2} & =\left(4 k^{2}-4 k\right) b^{2} \\
& =2\left(2 k^{2}-2 k\right) b^{2}
\end{aligned}
$$

case z bisear. So $b=2 k, x \in \mathbb{Z}$ is even
aw) $\left(a^{2}-2 a\right) b^{2}=\left(a^{2}-2 a\right)\left(4 k^{2}\right)=2\left(a^{2}-2 a\right)\left(2 k^{2}\right)$ is ever
9) Prove: If two integers have the same parity, then their sum is even.
case 15 x, y are bot even integer. So $x=2 k, y=2 k=k_{i} \in \mathbb{Z}$ give $x+y=2 k_{1}+2 k_{2}=2\left(k_{1}+k_{2}\right)$ is even,

Casters $x y$ ore both ods int. So $x=2 k_{1}+1, y=2 k_{2}+1$, $k_{i} \in E$. gives $x+y=2\left(k_{1}+k_{2}+1\right)$ is ever.
10) Prove: There exits natural number n such that 5 divides $2^{n}-1$.

$$
\uparrow
$$

11) Use a non-constructive proof to prove: There is an irrational number raised to an irrational power that is rational.

12) Prove: There is a unique real solution to $a x+b=c$ for $a \neq 0$.
existence: $\quad X=\frac{c-b}{a} \quad B=$ sdi. for $a \neq 0$
Prove: $\quad a\left(\frac{c-b}{a}\right)+b=c-b+b=c$

Unique assume a second solution; call it g.
So $a y+b=c$ and $a x+b=c$ ar solus
gives $a y+b=a x+b$

$$
a y-a x
$$

$y=x$ so x is y. Have dine

